同一性試験の精度改善に向けた検証 ベースライン補正の効果

Verification to improve the accuracy of identity test Effect of baseline correction

実験の目的

2014年5 月に日本のPIC/S 加盟は承認されたことから、PIC/S が要求する製剤に使用される全ての医薬品原料に対して確認試験の運用が検討され⁽¹⁾さらに2019年に第十七改正日本薬局方第二追補にラマンスペクトル測定法として収載されるなど益々ラマン分光法への期待が高まり、原薬の結晶形の評価⁽²⁾や晶析反応⁽³⁾などの研究開発から製剤中の有効成分の含量均一性評価⁽⁴⁾や原料受入れ試験などの品質管理⁽⁵⁾まで広く利用される分析手法となっている.広く利用されるようになり、セルロースや生薬原料など蛍光発光を有する物質のスペクトルが傾斜するなどの問題⁽⁶⁾も明らかになってきた.

近年,医薬品の不正製造事例が明らかになり⁽⁷⁾,試験検査方法の科学的検証や人為的誤りの最小化⁽⁸⁾などの医薬品の品質管理に対する姿勢が問われるようになってきた.

そこで, 蛍光発光を有する結晶セルロースをモデル原料とし,携帯型ラマン分光計を用いて判別モデルを構築し, 判別モデルや試験結果のばらつきを科学的に検証した結果を報告する.

実験に用いた試料および装置

標準スペクトル測定と判別モデル構築には励起レーザー波長が 785nmを搭載した携帯型ラマン装置MIRA P (Metrohm AG Herisau/ Switzerland)を用いた. (Fig. 1)本装置は、わずか705gで, FDA21 CFR Part 11に準拠し、医薬品や化学品の原料受け入れ確認試験に用 いられている.装置の主な性能と仕様をTable 1に示す.

測定条件および解析

標準試料と判別モデル構築用試料として、結晶セルロース(UF-702 旭化成)とHPMC(信越化学)をそれぞれポリエチレン(厚み 20 μ 二重)に入れ、風袋の外から測定を実施した.(Fig. 2)標準ス ペクトル測定はレーザー強度5、積算回数は1回とし、判別モデル用 測定はレーザー強度5、露光時間はAuto、そして積算回数は1回を採 用した.なお、すべての試料は脱着可能な単焦点レンズを装置に搭 載し測定を行った.判別モデル構築にMIRA Cal P(Metrohm AG Herisau/Switzerland)を使用し、標準装備されているPCA(主成分分 析:Principal Component Analysis)を使って判別モデルを構築した. 判別モデルを寄与率、Loading Plot、Hotelling T²などの機能を 使って科学的検証を加え、p値を使って判別モデルの繰り返し精度の バリデーションも実施した.

結果と考察

①類縁物質の測定

Fig. 3にHPMCと結晶セルロース(MC)のラマンスペクトルを測定した結果を示す. 主骨格であるセルロースから蛍光発光が生じ、ラマン散乱のピークに重複することで試料由来のピークを不明瞭にしたと考えられる⁽⁹⁾ HPMCとMCのラマンスペクトルの850~1500cm⁻¹の領域においてHPMCには1119, 1152, 1366そして1452cm⁻¹に特異的なピークを確認し, MCには1093, 1120, 1355そして1378cm⁻¹などに特異的ないくつかのピークを確認した.⁽¹⁰⁾

②判別モデルの検証

Fig. 4 (a)にベースライン補正を行っていないMCのスペクトルを 示し, Fig. 4 (b)にベースライン補正後の同ラマンスペクトルを示 す.またFig. 4 (c)にPCAから得られた第一主成分 (PC1) のラマン スペクトル (ローディングプロット)を示す.ベースライン補正後 のスペクトルはMCに特異的なピーク (①~④)が補正前のピークと 比較して明瞭になった.主成分 (PC1) スペクトルは補正後のスペク トルとピーク位置と強度が酷似していることからベースライン補正 後の判別モデルの第一主成分はMCであることが示唆された.⁽¹¹⁾

装置の主な性	t能・仕様
励起レーザー波長	785±0.5nm
測定可能領域	$400\sim2300~\text{cm}^{\cdot1}$
スペクトル分解能	$8\sim 10~{\rm cm}^{-1}$
測定時間(最大)	20秒
レーザー出力(最大)	100mW
置き	705g
サイズ (H x W x D)	126 x 88.4 x 44.8 (mm
検出器	1024 X 64 ピクセル
バッテリー	単三パッテリー 2本
動作温度範囲	$-20 \sim 50^{\circ}C$

Fig. 1

Table 1

結晶セルロース(MC)

ヒドロキシプロピルメチル セルロース (HPMC)

③寄与率

PCA (Principle Component Analysis) とは、相関のある多数の変 数から相関のない少数で全体のばらつきを最もよく表す主成分と呼ば れる変数を合成する多変量解析の1つで、PLSやMCRと並んで医薬品の 有効成分の結晶多形の識別や晶析反応解析、工程管理に広く利用され ている統計解析の1つである. ⁽¹²⁾ PCA解析から得られた主成分は ローディングプロット(Loading Plot)として表すことができる.⁽¹³⁾ (Fig.5) Fig.6に本主成分分析結果から得られた寄与率を示す. PC1 の寄与率は84.7, PC2は2.091となった. (Table 2)主成分1~10の累 積寄与率は94.216となった. (非表示)残差は装置が本来有するノイ ズや測定誤差などと解釈され⁽¹³⁾,本実験から得られた累積寄与率は 100%に近く、データの散らばり度合いを説明できている割合が高い ことを表している.

④ホテリングT²プロット

PCA結果の1つにホテリングT²(Hotelling) プロット を使って潜在的な外れ値(誤判定)の識別を可視的に可 能とした結果をFig. 7に示す.正常値(朱●)と外れ値 (黒●)で示している. ⁽¹⁴⁾潜在的な外れ値の識別は本実 験では95%の信頼度を採用して計算した.外れ値となる スペクトルのみに1800cm⁻¹付近(茶矢印)ピークがある ことがわかる. 1800cm⁻¹付近にピークを持つ官能基は結 晶セルロースになく、蛍光発光や電気ノイズなど外的要 因が原因と考えられた. (Fig. 8)

⑤試験結果のばらつき(バリデーション)

MCの2種類の判別モデル(補正あり,なし)を 使ってMCの同一性試験を行った結果をTable 3に示 す. 補正なしの判別モデルを使った場合に、18回試 験中に7回の誤判定となったが、補正ありの判別モ デルを使えば誤判定はなかった. 判定の閾値を p≥0.05とした. 繰返しの測定結果のばらつきは補 正ありの場合、0.12になり、補正なしの場合には 0.26となり、補正により繰返しの試験結果の精度が 改善されたことが分かった. (Table 4)

まとめ

可視領域の励起レーザーを使った蛍光発光を有す る原料の同一性試験は、ベースライン補正を施した 判別モデルを採用することで誤判定を排除すること が可能となった. 主成分分析を用いて判別モデルを 構築した.構築後の判別モデルはローディングプ ロットや寄与率さらにホテリングT²などを使えば, 科学的検証が可能になり、判別モデルの評価や誤判 定の原因を追究することが可能となった.

【参考文献】

100-79ストリー (1) 久田浩史,野上太郎, and 牟田史仁. "製剤機械等の紹介 ハンドヘルドラマン分光計にお ける 1064nm 励起の利点." 製剤機械技術学会誌= Journal of pharmaceutical machinery and ngineering 24.4 (2015): 407-413.

"Direct high-resolution imaging of crystalline (2) Hisada, Hiroshi, et al. components in pharmaceutical dosage forms using low-frequency Raman spectroscopy. Organic Process Research & Development 19.11 (2015): 1796-1798. (3) Inoue, Motoki, et al. "Real-time formation monitoring of cocrystals with

different stoichiometries using probe-type low-frequency Ramanspectroscopy. Industrial & Engineering Chemistry Research 56.44 (2017): 12693-12697.

(4) Inoue, Motoki, et al. "Transmission low-frequency Raman spectroscopy for quantification of crystalline polymorphs in pharmaceutical tablets." Analytical chemistry 91.3 (2019): 1997-2003.

【日本国内販売代理店】 デモ、価格などの詳細お問い合わせは 株式会社テックアナリシス 〒572-0020 大阪府寝屋川市田井西町18-10 電話/FAX 072-380-6245

Table 3

(5) 久田浩史, et al. "日本薬局方の医薬品各条における確認試験を志向したラマン分光法の実用 "製剤機械技術学会誌= Journal of pharmaceutical machinery and engineering 27.1 (2018): 5-件.

12. (6) Kostamovaara, Juha, et al. "Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD." Optics express 21.25 (2013): 31632-31645.

(7)医薬品の不正製造事例の再発防止及び富山県の医薬品産業に対する信頼回復の方策についての とりまとめ (2021)

(8) 原葉の品質確保への取組み 厚生労働省 医薬・生活衛生局 (2016)
(9) Gordon, Keith C., and Cushla M. McGoverin. "Raman mapping of pharmaceuticals." International journal of pharmaceutics 417.1-2 (2011): 151-162.

(10) De Veij, Marleen, et al. "Reference database of Raman spectra of pharmaceutical excipients." Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy. Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 40.3 (2009): 297-307. (11) Inoue, Motoki, et al. "In situ monitoring of crystalline transformation of carbamazepine using probe-type low-frequency Raman spectroscopy." Organic Process Research &

Development 21.2 (2017): 262-265.

(1 2) Inoue, Motoki, et al. "Transmission low-frequency Raman spectroscopy for quantification of crystalline polymorphs in pharmaceutical tablets." Analytical mistry 91.3 (2019): 1997-2003.

(13) Rajalahti, Tarja, and Olav M. Kvalheim. "Multivariate data analysis in pharmaceutics: a tutorial review." International journal of pharmaceutics 417.1-2 (2011): 280-290

(14) Igne, Benoît, et al. "Modeling strategies for pharmaceutical blend monitoring and end-point determination by near-infrared spectroscopy." International journal of pharmaceutics 473.1-2 (2014): 219-231

メールアドレス:hisada@tekanalysis.jp ホームページ :http://tekanalysis.jp/ 携帯電話番号:090 4037 2065